Section 1

Air Resistance and Water Resistance

Air resistance – A force that is caused by air with the force acting in the opposite direction to an object moving through the air.

Water resistance - A force that is caused by water with the force acting in the opposite direction to an object moving through the water.

https://www.youtube.com/watch?v=fr9JxrqnpGU&ab _channel=NehalAnbar

Section 2

Forces – measured in newtons

Force – A push or pull upon an object.

Fulcrum -The place where the lever pivots (moves).

Friction- the 'sticking' force that occurs when an object moves over another.

Section 3

SCIENCE - Working Scientifically

Aim - what the experiment is trying to find out

Equipment - list and/or diagram of what will be used

<u>Prediction – use the aim</u> to say what you think will happen and why. **Use results** to create future predictions.

Method - step by step of what you need to do

Results - measurements and/or observations

<u>Conclusion</u> – what you have found out from the results and what this tells you. This should be linked back to your aim.

<u>Variables</u> – A variable is a factor that can be changed in an experiment.

Independent – the variable which is being altered/changed.

Dependent - the variable being tested or measured

Control - the variable that is kept the same

- Identifying control variables, independent and dependent variables is important in making experiments fair.

- Knowing about variables can help you make scientific predictions and test them.

Evaluation – What was good? What went wrong? Why?

<u>Fair test</u> – when you only change the one variable you are measuring, and control all other variables.

TAKE A LOOK AT HOME: Variables - Working scientifically -KS3 Science - BBC Bitesize - BBC Bitesize

Section 4

Product Design

Key factors in product design:

Research for;

Purpose - why are we designing the product?

Function - what does the product need to do?

Audience - who will the product be made for?

 $\underline{\textbf{Sustainability}} - \text{ it is important for designers to minimise the impact that their product will have on the environment.}$

Reuse - Can the product be passed on or its life extended by using it repeatedly? Reusable carrier bags from the supermarket are a good example.

Recycle - Can materials such as metal, plastic and glass be collected and converted? Plastic bottles can be shredded into pellets to make new plastic bottles.

Reduce - Are there products that last longer or can be recharged? Can the miles the product has to travel be cut? Or could *rechargeable batteries* or locally-sourced products be used?

Evaluating

Evaluation – this needs to be linked to the purpose and intended user/audience

Use of feedback from the intended users of a product can be used to assess how much the product met the aim of the research e.g. to create a product that

This includes both what worked well and what didn't so that if the product was to be made again, these changes can be implemented and hopefully achieve a better result.

- What went well?
- What went wrong?
- How can it be improved next time?

Section 5

Types of Mechanisms

Gears or cogs- Used to change speed, direction or force of motion. When two gears are connected, they always turn in the opposite direction to one another. *E.g. Clocks, Bikes, Drills*

Levers Used to make a small force lift a lighter load. A lever always resets on a pivot or fulcrum. *E.g. door handle, light switch, scissors*

Pulleys – Used to reduce the amount of force needed to lift a load. The more wheels in a pulley the less force is needed to lift the weight. *E.g. crane, flagpole, window blind*

Identifying different parts of a CAM toy

Cam Mechanism - made up of three components: a <u>cam</u>, <u>slider</u> and <u>follower</u>. The mechanism causes components to move. Cams can be made out of metal, plastic or wood.

Rotary motion -takes place around a fixed axis, meaning that it doesn't wobble or move up and down.

Linear motion -when an object moves in a straight line.

Uses: Car engines, Drills, Toys

Section 6

Instructions for making a CAM toy

1. Design and create your background and moving part on study card.

- 2. Cut twelve, 7cm pieces of balsa wood.
- 3. Measure and cut 13cm of dowel wood.
- 4. Measure and cut 8cm piece of dowel.
- **5.** Pierce the 13cm dowel through your CAM
- **6.** Stick a small piece of cardboard to the end of the 8cm dowel.

Constructing the CAM toy

1. Hot glue four, 7cm pieces of balsa together to make a square.

2. Repeat step 1 with 4 more pieces of balsa wood.

3. Hot glue the remaining 4 pieces of balsa to the corners of one of the squares.

4. Stick the second square on top to form a cube.

5. Glue your card to the outside of the cube.

6. Attach the cam mechanism inside the frame.

7. Turn the handle and watch your toy move!

Section 4 WB 27th November

Identifying different parts of a CAM toy

Cam Mechanism - A cam mechanism is made up of three components: a **cam**, **slider** and **follower**. The mechanism causes components to move. Cams can be made out of metal, plastic or wood.

Rotary motion -takes place around a fixed axis, meaning that it doesn't wobble or move up and down.

Linear motion—when an object moves in a straight line.

Uses: Car engines, Drills, Toys

Section 5 WB 5th December

Cross Sectional and Exploded Diagrams

Cross sectional diagrams –used to show an object cut in half so you can see the inside.

Exploded diagrams – used to show the individual parts of an object and how they fit together.

Section 6 WB 12th December

Identifying different parts of a CAM toy

Cam Mechanism - A cam mechanism is made up of three components: a <u>cam</u>, <u>slider</u> and <u>follower</u>. The mechanism causes components to move. Cams can be made out of metal, plastic or wood.

Rotary motion -takes place around a fixed axis, meaning that it doesn't wobble or move up and down.

Linear motion – when an object moves in a straight line.

Uses

Car engines

Drills

Toys

Working scientifically,

Use old book covers for recycled and reused card